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Question 1 [11 marks] 

Let U be a one-dimensional subspace of the R-vector space C anda € C. 

a) Prove that U is uniquely determined by the coset a+ U. [4] 

b) Show that the representatives of a + U are exactly the elements of a+ U. [5] 

c) Prove that any two cosets of a+ U are disjoint or equal. [2] 

Question 2 [13 marks] 

a) What are separated subsets of C? Which subsets of C are connected? State the 
definitions. [5] 

b) Let c,d € C. You are reminded that the line segment with endpoints c and d is the 

set 

(c,d) = {(1-—A)e+ Ad] 0<A< 1}. 

Explain why (c,d) is connected. Proofs are not required. [5] 

c) Let D C C. Assume that there exists some a € D such that (a,z) C D for all 
z € D. Show that D is connected. [3] 

Question 3 [12 marks] 

a) What is an argument of a non-zero complex number? State the definition. [2] 

b) Let z € C% and let y := Argz be the principal argument of z. ~ g g 

i) Show that Rez = |z| cosy. [2] 

ii) When is 
_ Rez 

yp = arccos Ta 

true? State your reasons. [8]



Question 4 [13 marks] 

Let X CC, f:X — Ca function andaeé X. 

a) Prove that f is continuous at a if and only if for each ¢ > 0, there exists some 6 

such that f(Ns(a)N X) C N-(f(a)). [3] 

b) Let (zn) € N be a sequence in X which converges to a. If f is continuous at a, prove 
that (f(zn))n is convergent and lim f(zn) = f(a). [4] 

c) If f is not cintinuous at a, prove that there exists a sequence (wn)n in X which 
coverges to a but (f(w,))n does not converge to f(a). [6] 

Question 5 [18 marks] 

a) When does the path integral f f(¢) d¢ exist? Explain! [5] 
¥ 

b) Let y be a continuously differentiable path. If f f(¢) d¢ exists, show that f f(¢) d¢ 
=y 

exists and 

[row=- | roa. 

o 
c) Let a and £ be two paths in C. When does a + f exist? State the definition and 

show that a + @ is a path. [8] 

Question 6 [17 marks] 

a) State and prove the addition theorem of the exponential function. [5] 

b) Let exp: C — C be defined by exp(z) := e?. Show that exp is a homomorphism 
from the additive group C+ onto the multiplicative group C% of the field C. (6] 

c) What is a period of the function exp? Show that the periods of exp form the 

subgroup (277) of Ct. [6] 

b
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Question 7 [16 marks] 

a) In comples analysis, what is an analytic function? State the definition. [4] 

b) Show that every analytic function is a holomorphic function. [5] 

c) Prove that every holomorphic function is an analytic function. [7] 

End of the question paper


